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Abstract— Complementary sequences (CS) were considered 

to be used in pairs, although their property to reduce the crest 

factor in OFDM and MC-CDMA systems employing CS-based 

spreading is widely known. Their individual properties have 

hardly ever been studied, with one exception for the Golay 

sequences. In this paper, we study the individual properties of 

periodic CS (PCS), which are a superclass of Golay sequences. 

We show that PCS have remarkable correlation characteristics 

and unique features at their own, acting as single sequences. 

Although PCS are somewhat inferior to the Gold and Kasami 

sequences in terms of peak correlations, they are similar, and 

sometimes even perform better, in terms of RMS correlation 

values, and outnumber them by orders of magnitude. The 

structure of PCS enables efficient processing in applications 

requiring high data rates. We have also identified the unique 

feature of PCS which is possibility to use them to construct sets 

of orthogonal signals that lead to processing advantages of both 

complementary sequences and cyclic codes.  

Keywords— auto-correlation, cross-correlation, multicarrier 

CDMA, OFDM, PAPR, periodic complementary sequences  

I. INTRODUCTION  

The correlation properties of code sequences play a major 
part in the code design for CDMA, being responsible for the 
level of multiple access interference and self-interference due 
to multipath propagation and code acquisition. The first on is 
affected by the cross-correlations between different codes of 
the code family whereas the last two − by the periodic auto-
correlations, that is the correlation between time-shifted 
copies of the same code sequence. A prime example of the 
importance of periodic correlations is in the LTE uplink 
reference signal sequences [1], where the cyclic shifts of the 
code sequence must be orthogonal or nearly orthogonal to 
each other. Maximum value of correlation between code 
sequences reflects system’s worst case performance, while 
the root mean square (RMS) correlation values are widely 
used as a measure of average interference that may be 
produced by a particular code-set [2]. In signal processing, 
cross-correlation gives a measure of resemblance between 

the time shifted versions of signals α(t) and ξ(t), whereas the 
discrete cross-correlation function (CCF) may serve as a 
measure of similarity between their discrete analogs.  

Complementary binary sequences were originally 
defined as pairs of sequences with the property that the sum 
of their aperiodic autocorrelation functions is zero 
everywhere except the zero shift. Such sequences were 
originally introduced in [3] and are used for navigation, 
synchronization, in radars, and in measuring techniques. 
Later, aperiodic complementary sequences with more than 
two sequences involved were considered [4]. Periodic 
complementary sequences (PCS) were first introduced by 
Bomer and Antweiler [5]. A set of binary sequences is 
called a set of PCS if the sum of the periodic autocorrelation 

functions (PACF) of the sequences involved (often referred 
to as a “flock” of sequences) is zero everywhere except at 
zero shift. PCS include aperiodic complementary sequences 
as a special case.  

The ultimate goal in periodic sequence design is a set of 
“perfect” sequences satisfying the ideal periodic correlation 
requirements (which means that all out-of-phase values of 
the autocorrelation functions are zero) [6]. In radar sensing 
and wireless communications, such sequences are desirable 
for optimal performances of a variety of applications such as 
spread spectrum communications, channel estimation, object 
detection and ranging [7]. For sequences with elements ±1, it 
is almost certain that only one sequence with the ideal PACF 
exists, i.e., (+1, +1, +1, −1). So in the binary case, PCS is a 
natural remedy for this situation [6]. If a flock of PCS is 
transmitted and afterwards correlated with twice repeated 
similar sequences, then the sum of the resulting periodic 
correlation functions is zero between the two main peaks in 
one period. Thus, complementary sequences are mainly used 
in pairs or flocks, where the complementarity of their 
autocorrelation functions is essential [8-13]. The individual 
characteristics of the sequences were never considered – with 
few exceptions. One of these, with promising results, is [14], 
where the analysis of the autocorrelation properties of Golay 
sequences (which are a subfamily of PCS) up to lengths 
N=256 was carried out by an exhaustive computer search. 
With that, in some applications, PCS exhibit very valuable 
properties, acting as single sequences. Their typical period is 
2n which is well fit to FFT-processors and other digital 
technique. The structure of the PCS can be defined in terms 
of Shapiro polynomials [15], so one more advantage is the 
algorithm called fast Golay correlation (FGC), which enables 
efficient processing for applications requiring high data rates 
and long code sequences [14].  

It is known that complementary sequences have unique 
spectral properties. Their power spectrums exhibits a kind of 
complementarity as well: just as the autocorrelation 
functions of such pairs of sequences add up to a delta 
function, their power spectra similarly “complement” each 
other to a value uniformly distributed over the frequency 
domain. Thus, for any sequence in a pair, the spectral peaks 
are no more than twice the average value of the spectrum. 
That is, if such code sequences are applied to the IFFT block 
in an OFDM (or MC-CDMA) system, the Peak-to-Average 
Power Ratio (also known as the crest factor value), defined 
over discrete symbols is bounded up by 3 dB [16-20]. The 
great interest in complementary codes in various fields of 
technology, the growing variety of their applications [21, 
22], as well as the indicative results of [14], are becoming 
an increasingly compelling reason for a detailed study of the 
individual properties of PCS in addition to the traditional 
characteristics they possess in “flocks”.  
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In the next section, we introduce the terms and basic 
concepts of PCS and consider the key parameters by which 
their properties are evaluated in further research. In section 
III, we derive the basic formulas that serve as a starting point 
for all subsequent analysis of PCS and obtain the relations 
that determine the peak and RMS values of their PACF. In 
section IV we assess the quantitative characteristics of the 
PCS families. Section V examines their cross-correlations. 
Section VI discusses an important feature of PCS that can be 
used to construct orthogonal binary signal sets from them. 
Finally, section VII summarizes and concludes this paper. 

II. PERIODIC COMPLEMENTARY SEQUENCES: BASIC TERMS  

Let {α}N be a sequence of length N: α0, α1,...αN−1. Then  

• the sequence {−α}N  means the negation of every 

element of the sequence {α}N ;  

• {ξ}N : ξi=αi for i=0 mod 2, ξi=−αi for i≠0 mod 2 

denotes the alternately negated sequence {α}N ;  

• {ξ}N≡{αs}N : ξi=α(i+s)mod N  denotes the sequence {α}N 
shifted cyclically by s elements;  

• {ξ}N where ξi=αN−i , except ξ0=α0, denotes the reverse 

of the sequence {α}N;  

• {ξ}N : ξi=αN−1−i, denotes the reflected sequence {α}N .   

The common way to create a sequence complementary 

with respect to a given sequence {α}N is the alternate 

negating: βi=(−1)i.αi , i=0,1,...N−1. The negation, reflection 
(reverse) and any shift of either or both of these sequences 
will not change their complementarity since all these do not 

change the PACF of the sequences. That is, for α0=±1, 

β0=−α0, and s=0,1,...N/2−1, at the n-th iteration we have  

{α}N : α0,β0,α1,β1,...αN/2−1,βN/2−1 ≡ {α}N/2#{±βs}N/2
(*) ,   (1) 

where {α}N/2 and {β}N/2 are PCS of length N/2, “#” denotes 

their interleaving, “−” denotes negating of each element of a 
sequence, and (*) means its possible reverse.  

Periodic CCF (PCCF) is a measure of similarity of two 
different sequences as a function of the displacement m of 
one relative to the other, whereas the periodic 
autocorrelation function (PACF) is a measure of the 
similarity between two shifted copies of the same sequence:  
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Let {γ}2N be an interleaved sequence of 2N elements 
which is obtained via merging (by alternately mixing) two 

sequences {α}N and {β}N:  

{γ0,γ1,γ2,...γ2N−1}≡{α0,β0,α1,β1,...αN−1,βN−1} : {α}N#{β}N . 

Let us denote the sequence {β}N complementary to {α}N 

as {β}N=С{α}N. By definition, its main property is  

Rβ,N(m)=−Rα,N(m) for any m≠0. 

If we choose a sequence {α}N in such a way that 

Rα,N (2m)=0 ∀ m=1,..., N/2−1,                      (2) 

then a sequence {β}N  such that βi=(−1)i.αi, i=0, ..., N−1, is 

complementary to {α}N , since for m=0,...,N/2−1:  

)2()2( mRmR NN α,β, =  and )12()12( +−=+ α,β, mRmR NN .  

 

In what follows, we say that a sequence of N elements 
with property (2) belongs to GN (the family of conventional 
or “regular” PCS). As (2) is always true for any binary 
sequence of 4 elements the sum of which is even (e.g., 

{−1, 1, 1, 1}), there are 24/2=8 such sequences. Any regular 
sequence of length N=2n belonging to GN family can be 
constructed by interleaving a pair of PCS of length N/2 that 
belong to GN/2 and are complementary with respect to each 

other. The sequence {γ}8≡{α}4#{βs}4 built in accordance 
with (1) has the property (2) by virtue of  

)()()2( 2/,2/,, mRmRmR NNN βαγ += .               (3) 

Periodic complementary sequence of length N=2k can 
always be obtained from an initial PCS of length N=4 by 
k–2 fold alternate negation and interleaving. Indeed, if the 

PACF of a sequence {α}N satisfies (2), then its alternate 

negation is the sequence {β}N, the PACF Rβ,N(m)=−Rα,N(m) 

of which takes the form (2). By interleaving {α}N and {β}N, 

we obtain the sequence {γ}2N≡{α}N#{β}N with property (2) 
by virtue of (3). It is also obvious that the sequence 

complementary to the sequence {γ}2N always exists. Thus, if 
(2) holds for some sequence, then the latter belongs to GN, 
which is generated by sequences from the family GN/2.  

Let ΞN(m) denote a periodic cross-correlation between 
any two sequences of length N in the family GN, whereas 

ΘN(m) is the cross-correlation function “within” a pair of 
complementary sequences (i.e., between two sequences 
that belong to GN and are complementary to each other). 
For the sake of discussion below, we also use the following 
terms and definitions. So, for a sequence of length N,  

• RN and ΘN are the maximum PACF value and the 
maximum PCCF value (for any mutual shifts “inside” 
a pair of PCS), respectively;   

• NR
)

)( NΘ
)

and NR
(

)( NΘ
(

are the maximum PACF 

(PCCF) values for even and all odd m, respectively.    

Note that the mean value of PACF sidelobes <RN(m)>=0 

for m≠0 (since for any {α}N∈GN there always exists a 

sequence {β}N=C{α}N), and, in exactly the same way, the 

mean value of PCCF <ΘN(m)>=0 (since for any {α}N∈GN 

there is always {β}N≡{−α}N). Therefore, the mean squares of 
the sidelobes of both correlation functions coincide with their 

variances (σ2
N and 

2
ND , respectively).  

III. AUTOCORRELATION PROPERTIES OF PCS 

It is easy to prove that for any sequence of length N 
constructed from a pair of complementary PCS of length 
N/2 in accordance with (1), the following relations hold:  

ΘN(2m) = Rα,N/2(m) − Rβ,N/2(m) = 2RN/2(m),  m≠0;       (4) 

RN(2m+1)=ΘN/2(N/2−1−m)+ΘN/2(m) ;                (5) 

ΘN(2m+1)=ΘN/2(N/2−1−m)−ΘN/2(m).                (6) 

Hence, in particular, it follows that  
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In what follows, we will also use two other formulae:  

)()()( smm N
s
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NΘ  is a PCCF of sequences {α}N and {βs}N 

(this equality is obvious); and  
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which is also not hard to prove using the convolution 
theorem. Proved for any two arbitrary sequences, this 
equality is obviously also true for a more special case of 
sequences complementary to each other.  

The cross-correlation matrix of {α}N and {βs}N, where 

s=0,..., N−1 (the matrix that contains the cross-correlations 
between shifted copies of these sequences as its elements) is 
a left circulant (or reverse circulant) Toeplitz matrix:  
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Let a sequence {γ}N ≡ {α}N/2#{βs}N/2 be an interleaving 
of a complementary pair of sequences of length N/2. Being 
an extended form of the PACF, its autocorrelation matrix 
R(s,m) is also circulant. According to (5), for odd m its 
columns are linear combinations of symmetrically opposite 

columns of the matrix Θ(s,m) like the ΘN/2(m)+ΘN/2(n), 
m+n=1 (mod 2). Its even columns are zero, so we find the 

sum of the ),(2 msRN  values for odd m, averaging it over all 

s and m, s=0,...,N/2−1, m=1,..., N−1:  
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Taking into account (5) and rearranging the terms in the 
following expression we obtain:  
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As each pair of (m,n) occurs four times there and, having 
in mind the property (7), thence:  
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From (10), knowing the initial term σ2
4=0, one can obtain 

all subsequent terms for any N=2k, where k is an integer. We 
also can find the relationship between the variance of PACF 
of a periodic complementary sequence and the variance of 
PCCF between a pair of PCS:  
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Finally, from (10) and (11) we derive the relationship 

2
2/

2
NN DND −= .                             (12) 

As it was noted above, when looking over the values of 
RN(s,2m+1) over all s and m, all possible pairs of elements 

of the matrix Θ(s,m) are summed, where ΘN/2(m)+ΘN/2(n), 

m+n=1 (mod 2). Therefore, for any sequence {γ}N , there 
always exists a maximum value of the PACF sidelobe: 

2/2/ NNNR Θ+Θ=
()(

 (since 0=NR
)

 by virtue of (2)).  

For any {β}N/2∈GN/2 the sequence {−β}N/2 also belongs 
to the family GN/2, whereas the negation of either of the two 

sequences, {α}N/2 and {βs}N/2, switches their PCCF to the 
opposite sign. Thus, according to (6), the maximum value of 

cross-correlation between sequences {γ}N and {µ}N of 

length N, where {µ}N=C{γ}N, always exists and is equal to 

2/2/ NNN Θ+Θ=Θ
()(

. Having in mind the above and taking 

into account formula (4) let us write:  

2/2 NN R
()

=Θ  and, 2/2/ NNNNR Θ+Θ=Θ=
()(

.  

From the last two equalities it follows that  

4/2/ 2 NNN RRR += .                        (13)  

We transform (13) by setting N=2k, RN=rk . Then it takes the  

form =++=+= −−−−− 23221 2)2(2 kkkkkk rrrrrr  

)2()1(4 12 jj
jk

k rrr −−+= +
−

− . Let in turn,  

j=2 (r2=R4=0, r3=R8=4), then ( )k
kk rr )1(4 2 −+⋅= − . 

Theorem 1. The PACF sidelobe variance of any PCS is 
linearly related to its maximum absolute sidelobe value:  
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Lemma 1. If (14) holds for sequences of the families 
GN/4 and GN/2, then it is also true for sequences of GN family. 

Proof. Let's substitute (14) into (13) and assume that the 
expression below is true (by the condition of Lemma 1):  
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The second term is easily reduced to the form:  
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This proves Lemma 1.  

It is easy to verify that (14) holds for N=4 (Θ4=2, R4=0, 

02
4 =σ ) and, for N=8 (Θ8=8, R8=4, 32/72

8 =σ ). Therefore, 

according to Lemma 1 (14) is true for all N=2k, where k is 
an integer. This completes the proof of the theorem. Hence, 

(11) can be rewritten: NN RND −=2 .  

Comparing this equality with (12), we get 2
2/NN DR = . 

This means that the peak PACF sidelobe value of sequence 

{γ}2N ≡{α}N#{β}N , {β}N≡C{α}N, is equal to the variance of 

the PCCF of sequences {α}N and {β}N. What is also directly 
follows from these two equations is the relation between the 
length of PCS and the maximum absolute level of their 
PACF sidelobe: RN+R2N=N.  

The last relationship allows us replacing (13) with a non-
recursive formula for the maximum values of the PACF:  
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Although the maximum PACF sidelobe values for PCS 
are greater than those of the Gold or Kasami sequences, 
large sidelobes are rare (this is indicated by the smallness of 

σ2
N ). For large N, a simplified assessment can be applied:  

3))1(4(2 k
N N −−≈σ .                          (16) 

For Gold sequences of similar length, the average square of 

the PACF sidelobe is nearly thrice this value: N+1−1/N [23].  
 

IV. QUANTITATIVE CHARACTERISTICS AND BOUNDS OF THE 

NUMBER OF SEQUENCES IN THE PCS FAMILY  

Even-numbered shifts of any PCS are orthogonal to each 
other according to (2). Basically, there are two ways to build 
a periodic complementary sequence. In the first, PCS of 
length N (i.e., sequences that belong to GN) are constructed 
according to procedure (1) from sequences that belong to 
GN/2. In what follows we will refer to such sequences as 
“regular” PCS. However, some of the PCS (let's call them 
“irregular” PCS) may be obtained outside the scope of (1). 
One can get them by alternating complementary sequences 

/2/2/2/2 }{ ,}{ NNNN GG ∉β∉α  (i.e., Rβ(m)=−Rα(m), m≠0, but, 

Rα(2m)≠0, Rβ(2m)≠0 for some of m), starting from N=16. 

Irregular PCS are also a subset of the family GN: SN∈GN.  

Let QN be a total number of sequences in the family GN  

− both regular and irregular: )()( S
N

R
NN QQQ += . There are 

64 PCSs of length 8, generated from the PCS of length N=4 

(e.g., {α}4: −1, 1, 1, 1). Among the sequences of length 8, 

only regular PCS exist: 64
)(

88 == R
QQ . From these latter, 

in turn, 10)(
16 2=R

Q
 
regular PCSs of length 16 can be built 

with all the negations, permutations and reciprocal shifts of 
subsequences with even and odd elements, respectively: 

{α}N/2 and {β}N/2. It is obviously, that 2/
)(

2 N
R

N QNQ ⋅= .  

Besides, complementary pairs of sequences of length 8 

can be found outside G8: for instance, +−+−++++  

and, −−++−++− . The total number of different 

pairs ({α}8 ,{β}8) (with all possible cyclic shifts and 
negating of each of the sequences of the pair) is 29. 
Therefore, there are Q16=210+29=1536 distinct sequences in 
the family G16.  

Most PCS of length 32 are constructed from sequences 

belonging to G16. This results in 16
16

)(
32 2322 ⋅=⋅⋅= QNQ

R

PCSs in total. At the same time, for N=16 there is also 
another set of periodic complementary sequences such that 

S16∉G16, which is specified in a compact form by a set of 6 
generating sequences (see Table 1, where “0” represents +1 

and “1” stands for −1). The right column of the table shows 
the number of different sequences with the same PACF.  

 
TABLE I 

GENERATING SEQUENCES FOR CONSTRUCTING IRREGULAR  
COMLEMENTARY SEQUENCES OF LENGTH N=32 

 

generating 
sequence 

PACF R(m), m=0,1,…, N−1 
number of 
sequences 

1101010110000000 16, 0, 4, 0, 0, 0, −4, 0, 0, 0, −4, 0, 0, 0, 4, 0 * 32 

1110101001000000 16, 0, 4, 0, 0, 0, −4, 0, 0, 0, −4, 0, 0, 0, 4, 0  64 

1011101000010000 16, 0, 4, 0, 0, 0, −4, 0, 0, 0, −4, 0, 0, 0, 4, 0 * 32 

1100101001100000 16, 0, −4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, −4, 0 * 32 

1100010110010000 16, 0, −4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, −4, 0  64 

1110001001001000 16, 0, −4, 0, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, −4, 0 * 32 

 
Some sequences are self-conjugate (those denoted with 

an asterisk in Table 1) which means that the reverse of a 
sequence coincides with one of its shifts, i.e., does not result 
in a new sequence. Such sequences owe their name to the 
peculiarities of their spectra, such that the complex 
conjugation of the spectrum of the sequence is identical to 
the spectrum of its time shift (it differs from the original one 
only by multiplication by a complex exponent). As follows 
from Table 1, there are 256 sequences in S16 in total, so the 
number of PCS of length 32 they produce is  

152)(
32 22564)32+64+32(2 =⋅=⋅= NQ S . Hence,  

229376272+)2+2( 15151617)(
32

)(
3232 =⋅==+= SR

QQQ . 

This is a scalable synthesis: for arbitrary N, a lower bound 

2/2 NN NQQ ≥  can be used.  The number of different PCS 

of particular length along with peak PACF values are shown 
in Table 2. The number of PCS-based complementary cyclic 
codes is obviously equal to the number of PCS, excluding 

all cyclic shifts and negations of the latter: NQK NN 2/= .  



TABLE II 
PARAMETERS OF PACF AND THE NUMBER OF PCS 

 

N RN σ2
N Q N  

4 0 0 23 

8 4 4.571 26 

16 4 4.266 3×29 

32 12 12.387 7⋅215 

64 20 20.317 ≥7⋅222 

128 44 44.346 ≥7⋅230 

256 84 84.329 ≥7⋅239 

 

V. CROSS-CORRELATION PROPERTIES OF PCS  

In examining the cross-correlation properties of PCS, we 

rely on their key feature − “complementarity”: the property 
of being an “element”  of a complementary pair. Therefore, 
the results of such a study are applicable to a whole variety 
of PCS, including regular and irregular ones. Let us denote 
the total number of complementary cyclic codes in such a 

set by the symbol +
NK . This set can be conditionally halved 

into two subsets in such a way that any sequence from one 
subset (we denote it by L+) will have a complementary one 
in the other subset M+:  

{λ} N ∈L +  ⇔  ∃  { µ} N  :  { µ} N ∈M + ,  { µ} N = C{λ} N .  

The PACFs of the sequences {λ}N, {µ}N have opposite 

signs for m≠0. Let us find the average sum of the squares of 
the PCCF values in the PCS family with respect to arbitrary 

PCS { α} N . Since the number of cyclic codes in the subsets 

is 2/)()( +++ == NKMQLQ , then in view of (9) we have  
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Since one of the sequences designated as {ξ}N is actually 

the sequence {α}N itself, we must account for the correction 
value which converts one of the PCCFs above to PACF. As 
a result we get 
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As noted above, this equality was obtained without loss 
of generality and, therefore, is valid for all PCS. According 
to (14) and (15), the PACF sidelobe variance of the PCS of 

length N is  
)1(3
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N , whence we finally have  
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The RMS values of the PCCF along with the number of 
possible codes of particular length are tabulated in Table 3.  

 
TABLE III 

GOLD AND KASAMI SEQUENCES VS PCS 
 

NGold / 

NPCS 

KN (number of codes) rms CCF / ACF 

Gold Kasami PCS Gold PCS 

7 / 8 9  4 2.803 2.582  2.138 

15 / 16 17 67 48 3.992 3.989  2.065 

31 / 32 33  3584 5.654 5.656  3.519 

63 / 64 65 519 229376 7.999 7.999  4.507 

127 / 128 129  29360128 11.313 11.313  6.659 

255 / 256  257 4111 7516192768 15.999 15.999  9.183 

 

For N≤32, (17) is confirmed by an exhaustive computer 
search along with the calculation of cross-correlations of the 
PCS. With the aim of comparison, the relevant parameters 
of the most traditional PN-code families (Gold codes and 
Large sets of Kasami sequences) are given here. Whereas 
the latter outperform PCS in terms of peak correlation value 
(for N=2n−1, the highest absolute cross-correlation in these 
sets of codes is 2(n+2)/2+1 for even n and 2(n+1)/2+1 for odd n), 
the PCS are many times superior to them numerically (there 

are 2n+1 different Gold sequences and 2n/2×(2n+1)−1 is the 
size of the Large set of Kasami sequences).  

Moreover, large PCS correlations are very rare which is 
indicated by the smallness of their average squares: see (16) 
and (17). With that, it is the RMS value of ACF and CCF 
that is the parameter that dominates CDMA performance at 
average signal-to-noise power ratios [24].  

VI. COMPLEMENTARY “TWINS” 

Another important feature of PCS is their suitability for 
constructing complete sets of orthogonal signals. Double 
cyclic shifts of any sequence from the family GN give us a 
subset of orthogonal waveforms of size N/2. Let's determine 
the condition under which two such subsets of waveforms 
are orthogonal to each other. Let there be sequences 

{α}N∈GN , {β}N∈GN . Then the polynomial representation 
of their PCCF has the form  
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where A(Z) and B(Z) are polynomial representations of the 

sequences {α}N and {β}N, respectively, Zk=−j2πk/N. With a 
minor rearrangement of even and odd elements on the right 
side of (18), these polynomials can be reduced to the forms  
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For even samples according to (18), one can get  
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which is actually a decimated (by a factor of 2) Discrete 
Fourier Transform of the PCCF. Setting the latter to zero for 
even shifts (or, setting to zero Fourier coefficients on the left 

side of the equation, which means the same) (i.e., Θ(2m)=0, 

m=0,1,...N/2−1) we can find out the structures of the 
polynomials A(Z) and B(Z) that ensure the orthogonality of 

mutual even shifts of the sequences {α}N and {β}N :  
∗
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, where s is an integer. 

Here, the multiplication of the polynomials A0(Z2), 
A1(Z2) by the factor Zs corresponds to cyclic shifts of even 
and odd subsequences by s elements (to cyclic shift of the 

sequence {α}N by 2s elements). Positive s means left shift 
direction. Hence it follows that the polynomials A(Z), B(Z) 

of sequences {α}N and {β}N, orthogonal to each other, are 

related by formula ( )∗⋅−⋅±= )()()( 2
1

2
0

2 ZAZZAZZB S
.  

The Inverse DFT from the right-hand side of B(Z) is the 

sequence formed from {α}N by alternate negating. Complex 
conjugation (*) means the reverse of the order of elements 
of the sequence. Since neither the reverse nor the reflection 

of {α}N changes its PACF, then {β}N∈GN. The even shifts 

of α- and β-sequences (we will call them complementary 
twins) produce two mutually orthogonal signal subsets of 
N/2 orthogonal waveforms each, which gives us a complete 
set of orthogonal waveforms of size N. Below is an example 
of such a set of orthogonal waveforms of length N=8:  





























−++++−++
+++−++−+
+−++−+++
++−++++−

−β

++−+−−−+
−+−−−+++
−−−+++−+
−+++−+−−

−α

:code"

:code"

"

"

 
These signal sets, in particular, are an extension of the 

known Welti codes (сonsidering the isomorphism between 
the sequences of Golay and the codes of Welti [25]).  

VII. CONCLUSIONS 

PCSs represent special group of codes with large family 
size and good correlation properties. Their scalability enables 
design a bandwidth and data rate adaptive CDMA system 
with low crest factor, since the length and size of PCS sets 
can be adjusted according to the number of active users. 
Their structure leads to both fast processing algorithms (such 
as FFT and FGC) and a method for generating new sets of 
orthogonal codes. As a topic for further research, the fact that 
PCS can be seen as good individual sequences could open up 
a broader class of new applications for them. Another open 
issue is the expression for the maximum cross-correlation 
value of the PCS, which has yet to be derived.  
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