Додаток 5 до Регламенту аматорського радіозв'язку України (абзац третій пункту 10 розділу V)

Екзаменаційна програма для радіоаматорів вищої кваліфікації (для гармонізованого екзаменаційного сертифіката радіоаматора (HAREC) з урахуванням рекомендації Т/R 61-02).

Технічний зміст

Розділ 1. Теорія електрики, електромагнітного поля та радіозв'язку

1.1. Провідність:

провідник, напівпровідник, діелектрик;

струм, напруга та опір;

одиниці вимірювання ампер, вольт і ом;

закон Ома $U = I \times R$;

закони Кірхгофа;

електрична потужність $P = U \times I$;

одиниця виміру ват;

електрична енергія $W = P \times t$;

ємність батареї (ампер-час).

1.2. Джерела електрики:

джерело напруги, електрорушійна сила (ЕМF), струм короткого замикання, внутрішній опір і кінцева напруга;

послідовне та паралельне під'єднання джерел напруги.

1.3. Електричне поле:

напруженість електричного поля;

одиниця виміру вольт на метр;

екранування електричного поля.

1.4. Магнітне поле:

магнітне поле навколо провідника під струмом;

екранування магнітного поля.

1.5. Електромагнітне поле:

радіохвилі в якості електромагнітних хвиль;

швидкість розповсюдження і її зв'язок з частотою та довжиною хвилі

 $c = f \times \lambda$;

поляризація.

1.6. Синусоїдальні сигнали:

графічне відтворення в часі;

миттєва величина, амплітуда ($U_{\mbox{\tiny MAKC}}$), ефективна (RMS) та середня величина

$$U_{e\phi} = \frac{U_{\text{макс}}}{\sqrt{2}}$$
 ;

період та тривалість періоду;

частота;

одиниця виміру герц;

різниця фаз.

1.7. Несинусоїдальні сигнали:

звукові сигнали;

прямокутне коливання;

графічне відтворення в часі;

постійна складова напруги, перша та вищі гармоніки;

шум $P_{uu}=kTTT$ (тепловий шум приймача, шум у смузі частот, щільність шуму, потужність шуму в смузі пропускання приймача).

1.8. Модульовані сигнали:

незатухаючі коливання (CW);

амплітудна модуляція;

фазова модуляція, частотна модуляція і односмугова модуляція;

девіація частоти та індекс модуляції $m = \frac{\Delta f}{f_{\text{мод}}}$;

частота-носій, бічні смуги та ширина смуги частот;

форми хвилі сигналів CW (незатухаючі коливання), AM (амплітудна модуляція), SSB (одна бічна смуга) і FM (частотна модуляція) та їх графічне відтворення;

спектр сигналів CW, AM і SSB (їх графічне відтворення);

цифрові модуляції: FSK (частотна маніпуляція), 2-PSK (фазова маніпуляція), 4-PSK, QAM (квадратурна амплітудна маніпуляція);

цифрова модуляція: швидкість передавання в бітах, швидкість передавання символів (швидкість передавання у бодах) і ширина смуги частот;

контроль циклічним надлишковим кодом (CRC) та повторні передавання (наприклад пакетний радіозв'язок), пряме виправлення помилок (наприклад Amtor FEC).

1.9. Потужність та енергія:

потужність синусоїдальних сигналів $P=I^2 imes R$, $P=rac{U^2}{R}$, $u=U_{e\phi}$, $i=I_{e\phi}$;

коефіцієнти потужності, що відповідають таким значенням потужності: 0 дБ, 3 дБ, 6 дБ, 10 дБ і 20 дБ (як позитивні, так і негативні);

співвідношення вхідної/вихідної потужності в послідовно з'єднаних підсилювачах і/чи аттенюаторах (дБ);

узгодження (перенесення максимальної потужності);

співвідношення між входом і виходом потужності та її ефективністю $\eta = \frac{P_{\mathit{eux}}}{P_{\mathit{ex}}} \times 100 \% \; ;$

максимальне значення потужності огинаючої (р.е.р.).

1.10. Обробка цифрових сигналів (DSP):

дискретизація та квантування;

мінімальна швидкість дискретизації (частота Найквіста);

згортка (часова область / частотна область, графічне відтворення);

фільтрація для захисту від накладення спектрів, відновлювальна фільтрація;

ADC (аналого-цифровий перетворювач) / DAC (цифрово-аналоговий перетворювач).

Розділ 2. Компоненти

2.1. Резистор:

одиниця виміру ом;

опір;

вольт-амперна характеристика;

розсіювання потужності.

2.2. Конденсатор:

 ϵ мність;

одиниця виміру фарада;

взаємозв'язок між ємністю, розмірами та діелектриком;

реактивний опір
$$X_c = \frac{1}{2\pi fC}$$
;

співвідношення фаз між напругою та струмом.

2.3. Котушка:

самоіндуктивність;

одиниця виміру генрі;

вплив кількості обертань, діаметра, довжини та матеріалу серцевини на індуктивність;

реактивний опір $X_l = 2\pi f L$;

співвідношення фаз між напругою та струмом;

добротність.

2.4. Призначення та застосування трансформаторів:

ідеальний трансформатор $P_{\rm I} = P_{\rm II}$;

взаємозв'язок між кількістю витків та коефіцієнтом передавання по напрузі $\frac{u_{\text{II}}}{}=\frac{n_{\text{II}}}{}$, струму $i_{\text{II}}\equiv n_{\text{II}}$ та опору (тільки трактування);

$$\frac{1}{u_{\rm I}} \quad \frac{1}{n_{\rm I}} \quad \frac{1}{i_{\rm I}} = \frac{1}{n_{\rm I}}$$

трансформатори.

2.5. Діод:

призначення та застосування діодів;

випрямляючий діод, стабілітрон, LED (світло-випромінювальний діод), варикап;

зворотна напруга і струм витікання.

2.6. Транзистор:

р-п-р та п-р-п транзистори;

коефіцієнт підсилення;

порівняння польового та біполярного транзисторів (порівняння управління напругою та управління струмом);

транзистор у:

схемі з загальним емітером;

схемі з загальною базою;

схемі з загальним колектором;

вхідному і вихідному імпедансі вищезгаданих схем.

2.7. Різне:

простий термоелектронний прилад (лампа);

напруга та імпеданс у лампових каскадах з великою потужністю, трансформація імпедансів;

прості інтегральні схеми (операційні підсилювачі включно).

Розділ 3. Схеми

3.1. Комбінації компонентів:

послідовні і паралельні схеми резисторів, котушок, конденсаторів, трансформаторів і діодів;

струм та напруга в цих схемах;

робота реального (неідеального) резистора, конденсатора та котушок індуктивності на високих частотах.

3.2. Фільтр:

послідовний коливальний і паралельний коливальний контури:

імпеданс;

частотна характеристика;

резонансна частота $f = \frac{1}{2\pi f \sqrt{LC}}$;

добротність резонансного контура
$$Q = \frac{2\pi fL}{R_s}$$
, $Q = \frac{R_p}{2\pi fL}$, $Q = \frac{f_{res}}{II}$;

ширина смуги пропускання;

смуговий фільтр;

фільтр нижніх частот, фільтр верхніх частот, смуговий фільтр і смуговий режекторний фільтр, що складаються з пасивних елементів:

частотна характеристика;

П-образний фільтр і Т- образний фільтр;

кварцовий кристал;

впливи реальних (неідеальних) компонентів;

цифрові фільтри.

3.3. Джерело живлення:

схеми для одного напівперіодного випрямлення та двох напівперіодних випрямлень і мостовий випрямляч;

згладжуючі фільтри;

стабілізаційні схеми в джерелах живлення низької напруги;

імпульсні джерела живлення, розв'язка та електромагнітна сумісність (ЕМС).

3.4. Підсилювач:

НЧ та ВЧ підсилювачі;

коефіцієнт підсилення;

амплітудно-частотна характеристика та смуга пропускання (порівняння широкосмугового та резонансного каскадів);

зміщення для класів А, АВ, В і С;

нелінійні (гармонічні) та інтермодуляційні викривлення, перезбудження каскадів підсилення.

3.5. Детектор:

АМ детектори (детектори огинаючої);

діодний детектор;

демодулятори перемножувальні та генератори частоти биття;

FM-детектори.

3.6. Генератор:

зворотний зв'язок (навмисні та ненавмисні коливання);

фактори, що впливають на частоту, та умови стабільності частоти, необхідні для коливання;

LC-генератор;

кварцовий генератор;

генератор, що управляється напругою (VCO);

фазовий шум.

3.7. Система фазового автопідстроювання частоти (PLL):

контур управління зі схемою фазового компаратора;

частотний синтез с програмованим розподілювачем в контурі зворотного зв'язку.

3.8. Обробка цифрових сигналів (системи DSP-цифровий процесор сигналів):

топології фільтрів FIR (кінцева імпульсна характеристика) і IIR (безкінечна імпульсна характеристика);

перетворення Фурьє (дискретне перетворення Фурьє (DFT); швидке перетворення Фурьє (FFT), графічне відтворення);

прямий цифровий синтез.

Розділ 4. Приймачі

4.1. Типи:

супергетеродинний приймач з одним і двома перетвореннями частоти; приймачі з прямим перетворенням.

4.2. Блок-схеми:

СW-приймач (A1A);

АМ-приймач (АЗЕ);

SSB-приймач для телефонії з подавленою частотою-носієм (J3E);

FM-приймач (F3E).

4.3. Робота і функції таких каскадів (лише трактування блок-схем):

ВЧ підсилювач (з фіксованою смугою пропускання та смугою пропускання, що перестроюється);

генератор (фіксований та який перенастроюється);

змішувач;

підсилювач проміжної частоти;

обмежувач;

детектор, включаючи перемножуючий демодулятор;

підсилювач звукової частоти;

автоматичне регулювання підсилення;

S-метр;

подавлювач шумів.

4.4. Параметри приймачів (просте трактування):

суміжний канал;

вибірковість;

чутливість, шум приймача, коефіцієнт шуму;

стабільність:

дзеркальна частота;

блокування;

інтермодуляція, перехресна модуляція;

перехресне змішування (фазовий шум).

Розділ 5. Передавачі

5.1. Типи:

передавач з перенесенням частоти або без такого переносу.

5.2. Блок-схеми:

СW-передавач (A1A);

SSB-передавач для телефонії з подавленою частотою-носієм (J3E);

FM-передавач VCO системи PLL (фазової автоматичної підстройки частоти), який модулює звуковий сигнал (F3E).

5.3. Робота та функції таких каскадів (лише трактування блок-схем):

змішувач;

генератор;

буферний каскад;

збуджувач;

помножувач частоти;

підсилювач потужності;

узгодження вихідного сигналу;

вихідний фільтр;

частотний модулятор;

SSB-модулятор;

фазовий модулятор;

кварцовий фільтр.

5.4. Параметри передавача (простий опис):

стабільність частоти;

ширина смуги радіочастот;

бічні смуги;

звуковий частотний діапазон;

```
нелінійність (гармонійне та інтермодуляційне викривлення); вихідний імпеданс; вихідна потужність; коефіцієнт корисної дії; девіація частоти; індекс модуляції; неякісні сигнали при CW маніпуляції; SSB перемодуляція і розмивання спектра (причина); паразитне радіочастотне випромінювання (причина); випромінювання корпуса; фазовий шум.
```

Розділ 6. Антени і лінії передавання

6.1. Типи антен:

напівхвильова антена з центральним живленням; напівхвильова антена з кінцевим живленням; петльовий діполь; чвертьхвильова вертикальна антена типу "ground plane"; антена з пасивними елементами типу "Yagi"; апертурні антени (параболічний відбивач, рупорна антена); траповий диполь.

6.2. Параметри антен:

розподіл струму та напруги; імпеданс у точці живлення; ємкісний чи індуктивний імпеданс нерезонансної антени; поляризація; коефіцієнт направленої дії, ккд, підсилення антени; площа зони захвату;

потужність випромінювання (ефективна випромінювальна потужність (ERP) та ефективна ізотропно-випромінювальна потужність EIRP);

відношення потужностей сигналів, що випромінюються в напрямку "вперед/назад";

горизонтальні та вертикальні діаграми направленості.

6.3. Лінії передавання:

лінія з паралельних провідників; коаксіальний кабель; хвилевід;

```
характеристичний імпеданс (хвильовий опір);
коефіцієнт уповільнення (прискорення);
коефіцієнт стоячої хвилі;
втрати;
симетрування та чвертьхвильове узгодження;
вузли настройки антени (тільки П-образної та Т-образної конфігурації).
```

Розділ 7. Розповсюдження

затухання сигналу, співвідношення сигнал/шум;

розповсюдження в умовах прямої видимості (розповсюдження у вільному просторі, зворотний квадратичний закон);

іоносферні шари;

критична частота;

вплив Сонця на іоносферу;

найбільше значення частоти, що може бути застосована;

земна хвиля та просторова хвиля, кут випромінювання та відстань стрибка;

багатопроменевість при розповсюдженні просторових хвиль;

завмирання;

тропосфера (утворення каналу розповсюдження, розсіювання);

вплив висоти антени на відстань, яка може бути нею покрита (радіогоризонт);

температурна інверсія;

спорадичне Е-відображення;

авроральне розсіювання;

метеорне розсіювання;

віддзеркалювання від Місяця;

атмосферні перешкоди (віддалені грози);

галактичний шум;

фоновий (тепловий) шум;

основи прогнозування розповсюдження (енергетичний потенціал лінії зв'язку):

домінантне джерело шуму (шум у смузі у порівнянні з власним шумом приймача);

мінімальне співвідношення сигнал/шум;

мінімальна прийнята потужність сигналу;

втрати на трасі;

коефіцієнт підсилення антени, втрати в лініях передавання;

мінімальна потужність передавача.

Розділ 8. Випромінювання

8.1. Проведення вимірювань

вимірювання:

постійних та змінних напруги та струму;

похибки вимірювань:

вплив частоти;

вплив форми хвилі;

вплив внутрішнього опору вимірювальних приладів;

опір;

потужність постійного струму та потужність радіочастотного сигналу (середня потужність, максимальне значення потужності огинаючої);

коефіцієнт стоячої хвилі по напрузі;

форма хвилі огинаючої радіочастотного сигналу;

частота;

резонансна частота.

8.2. Вимірювальні прилади:

проведення вимірювань за допомогою:

багатодіапазонного вимірювального приладу (цифрового та аналогового); вимірювача потужності радіочастотного сигналу;

мостового рефлектометра (пристрій для вимірювання коефіцієнта стоячої

хвилі);

генератора сигналів;

частотоміра;

осцилографа;

аналізатора спектра.

Розділ 9. Радіозавади та захист

9.1. Радіозавади в електронному обладнанні:

блокування;

радіозавади корисному сигналу;

інтермодуляція;

детекторування в ланцюгах звукової частоти.

9.2. Причина радіозавад в електронному обладнанні:

напруженість поля передавача;

побічне випромінювання передавача (паразитне випромінювання, гармоніки); небажаний вплив на обладнання:

через вхід антени (антенна напруга, селективність входу);

через інші підключені лінії; прямим випромінюванням.

9.3. Заходи протидії радіозавадам

Заходи щодо попередження та усунення впливу радіозавад:

фільтрація;

розв'язка;

екранування.

Розділ 10. Захист

людське тіло;

джерело мережевого електроживлення;

висока напруга;

блискавка.

Національні та міжнародні правила і процедури експлуатації

Розділ 1. Фонетична абетка:

A	ALPHA	J	JULIETT	S	SIERRA
В	BRAVO	K	KILO	T	TANGO
С	CHARLIE	L	LIMA	U	UNIFORM
D	DELTA	M	MIKE	V	VICTOR
Е	ЕСНО	N	NOVEMBER	W	WHISKEY
F	FOXTROT	O	OSCAR	X	X-RAY
G	GOLF	P	PAPA	Y	YANKEE
Н	HOTEL	Q	QUEBEC	Z	ZULU
I	INDIA	R	ROMEO		

Розділ 2. О-код.

Код	Питання	Відповідь
QRK	яка розбірливість моїх сигналів?	розбірливість Ваших сигналів
QRM	чи створює вам хтось радіозавади?	мені створює радіозавади
QRN	чи заважають Вам атмосферні завади?	мені заважають атмосферні завади
QRO	чи належить мені збільшити потужність передавача?	збільшіть потужність передавача
QRP	чи належить мені знизити потужність передавача?	зменшіть потужність передавача

QRT	чи належить мені припинити	припиніть передавання		
	передавання?			
QRZ	хто мене виклика ϵ ?	Вас викликає		
QRV	Ви готові?	я готовий		
QSB	чи загасають мої сигнали?	Ваші сигнали загасають		
QSL	чи можете Ви підтвердити	підтверджую приймання		
	приймання?			
QSO	чи можете Ви зв'язатися з	я можу зв'язатися з безпосередньо		
	безпосередньо?			
QSY	чи належить мені перейти на	перейдіть на іншу частоту		
	іншу частоту?			
QRX	коли Ви знову вийдете на	я знову вийду на зв'язок о годині на		
	зв'язок?	частоті кГц (або МГц)		
QTH	на якій широті й довготі Ви	моє місцезнаходження на широті		
	перебуваєте (або відповідно	довготі (або відповідно до будь-якого		
	до будь-якого іншого	іншого позначення)		
	позначення)?			

Розділ 3. Робочі абревіатури, які використовуються в радіоаматорській службі

BK	сигнал, який використовується для переривання передавання			
CQ	загальний виклик всім станціям			
CW	телеграфне передавання (незатухаючі коливання)			
DE	від (використовується для відокремлення позивного сигналу станції,			
	яку викликають, від позивного сигналу станції, яка викликає)			
K	передавайте (запрошення до повідомлення)			
MSG	повідомлення			
PSE	будь ласка			
R	прийнятий			
RX	приймач			
TX	передавач			
UR	ваш			

Розділ 4. Міжнародні сигнали стихійного лиха, аварійний радіообмін та зв'язок у випадку стихійних лих

радіотелеграфний ••• — — ••• (SOS);

радіотелефонний "MAYDAY";

міжнародне використання аматорської станції у випадках національних лих; смуги частот, розподілені аматорській службі та аматорській супутниковій службі.

Розділ 5. Позивні сигнали розпізнавання аматорської станції; для чого призначені позивні; структура позивних сигналів; національні префікси.

Розділ 6. Розподіл смуг частот IARU розподіл смуг частот IARU; мета.

Розділ 7. Соціальна відповідальність за роботу аматорської станції

Розділ 8. Операторські процедури

Національні та міжнародні норми щодо аматорської служби та аматорської супутникової служби

Розділ 1. Регламент радіозв'язку МСЕ (ITU)

визначення аматорської та аматорської супутникової служб; визначення аматорської станції;

стаття 25;

статус аматорської та аматорської супутникової служб; райони MCE (ITU) для радіозв'язку.

Розділ 2. Регламент СЕРТ

рекомендація T/R 61-01;

тимчасове використання аматорських станцій в країнах-членах СЕРТ; тимчасове використання аматорських станцій в країнах, що не є членами СЕРТ, які приймають участь у системі T/R 61-01.

Розділ 3. Положення законів України, регламенту та умови експлуатаційних документів (ліцензій) АРС СЕРТ

закони України;

положення регламенту та умови експлуатаційних документів (ліцензій) АРС СЕРТ;

демонстрація знань щодо занесення даних до апаратного журналу:

ведення апаратного журналу;

призначення апаратного журналу;

реєстрація даних у апаратному журналі.